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Abstract
For real (time-reversal symmetric) quantum billiards, the mean length 〈L〉 of
nodal line is calculated for the nth mode (n � 1), with wavenumber k, using a
Gaussian random wave model adapted locally to satisfy Dirichlet or Neumann
boundary conditions. The leading term is of order k (i.e.

√
n), and the first

(perimeter) correction, dominated by an unanticipated long-range boundary
effect, is of order log k (i.e. log n), with the same sign (negative) for both
boundary conditions. The leading-order state-to-state fluctuations δL are of
order

√
log k. For the curvature κ of nodal lines, 〈|κ|〉 and

√〈κ2〉 are of
order k, but 〈|κ|3〉 and higher moments diverge. For complex (e.g. Aharonov–
Bohm) billiards, the mean number 〈N〉 of nodal points (phase singularities)
in the mode has a leading term of order k2 (i.e. n), the perimeter correction
(again a long-range effect) is of order k log k (i.e.

√
n log n) (and positive,

notwithstanding nodal depletion near the boundary) and the fluctuations δN are
of order k

√
log k. Generalizations of the results for mixed (Robin) boundary

conditions are stated.

PACS numbers: 05.45.Mt, 03.65.−w, 05.40.−a

1. Introduction

Interest has recently revived in the zeros of quantum wavefunctions of systems that are
classically chaotic, in particular as modelled by planar quantum billiards. For systems with
time-reversal symmetry, the relevant waves are real, and the zeros are nodal lines (McDonald
and Kaufman 1988); these divide the billiard into nodal domains, whose distribution has
been studied by Blum et al (2002) and Bogomolny and Schmit (2002). In the absence of
time-reversal symmetry, for example when the billiard is open or when it is threaded by an
Aharonov–Bohm flux line (Berry and Robnik 1986b), the waves are complex and the nodes
are points, originally studied in chaotic billiards by Berry and Robnik (1986a), and recently
by Saichev et al (2002); a wider interest comes from the fact that these point zeros are phase
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Figure 1. Billiard geometry and local coordinates.

singularities (otherwise called wavefront dislocations, optical vortices or topological charges),
on which there is now a large literature (Nye and Berry 1974, Berry 1981, Soskin 1998, Soskin
and Vasnetsov 2001a, 2001b, Vasnetsov and Staliunas 1999).

Here I shall study the statistics of nodal lines and points for highly excited chaotic states
n � 1, where the nth state is related to the wavenumber k by the Weyl rule

n = ABk
2

4π
, (1)

where AB is the area of the billiard (figure 1). The waves will be modelled by Gaussian
random functions (Berry 1977), with the innovation that these are adapted to satisfy the
boundary conditions locally (section 2). Although the distribution of directions (momenta) of
the constituent plane waves is isotropic (reflecting classical ergodicity), the random functions
are no longer isotropic: they have different statistics parallel and perpendicular to the boundary.
This extension enables the derivation, within the Gaussian random model, of perimeter
corrections to the bulk statistics. These corrections are obtained for nodal lines in section 3.1,
and for nodal points in section 4.1.

For both lines and points, and both Dirichlet and Neumann boundary conditions, the nodes
are repelled by the boundary, locally depleting their density. In addition, there are long-range
effects strongly suggesting logarithmic corrections (in k or n) for the billiard as a whole.
Surprisingly, these corrections are positive for nodal points, so that the boundary contributes
an overall increase in density, notwithstanding the depletion near the boundary. For mixed
(Robin) boundary conditions, the analogous results are stated in the appendix.

These boundary corrections to the averages are small effects, and must be compared with
the fluctuations to be expected on the isotropic Gaussian random model. These fluctuations are
calculated in sections 3.2 and 4.2. Because of long-range behaviour of the relevant correlation
functions, the fluctuations are larger than Poisson, and again logarithmic. But they are smaller
than the boundary corrections, leading to the hope that the latter will be detected in numerical
experiments.

The nodal lines in real waves are curved, and it is possible to calculate the probability
distribution of their scalar curvature κ; this calculation, giving a measure of the undulations
of the nodal lines, is done in section 3.3. The distribution decays slowly, so that although the
averages 〈|κ|〉 and 〈κ2〉 are finite, 〈|κ3|〉 and higher moments are infinite.

Real wavefunctions will be denoted by u(r), and complex waves by

ψ(r) = u(r) + iv(r), r = (x, y), (2)

where v(r) is also real. For Gaussian random functions, the k-dependence is easily extracted
by scaling, and it will be convenient to work with the dimensionless coordinates

R = (kx, ky) ≡ (X, Y ). (3)

Where convenient, spatial derivatives will be denoted by subscripts, e.g. ux or uy .
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For real waves, the quantity whose averages will be calculated is the total length of nodal
line in a mode u(r), namely

L =
∫ ∫

AB

d2r δ(u(r))|∇u(r)|. (4)

For the complex mode (2), we shall calculate statistics of the total number of nodal points
(intersections of nodal lines of u and v), namely (cf Berry and Dennis 2000)

N =
∫ ∫

AB

d2r δ(u(r))δ(v(r))|∇u(r)× ∇v(r)|. (5)

The techniques to be used in calculating the nodal statistics are extensions to two-
dimensional functions of the classic techniques employed by Rice (1944, 1945) for the zeros
of time signals. The first application to phase singularities was by Berry (1978), and a more
fully three-dimensional application, together with explanations of the techniques used, was
given by Berry and Dennis (2000).

Bies and Heller (2002) have considered a related effect: nodal lines near classical
boundaries associated with smooth potentials, rather than the hard walls considered here.

2. Boundary-adapted Gaussian random functions

The familiar Gaussian random function relevant to chaotic quantum billiards is a superposition
of plane waves all with the same wavenumber k but different directions. This can be written

uisotropic(R) =
√

2

J

J∑
j=1

cos(X cos θj + Y sin θj + φj ), (6)

where φj are random phases and θj are random directions, both uniformly distributed in the
range 0–2π , and the number of waves is J � 1, ensuring that linear functionals of u are Gauss
distributed. For the complex wave (2), the imaginary part v(R) is given by the formula (6)
with the cosine replaced by sine, and the same values of the angles φj and θj .

Such an isotropic superposition does not satisfy prescribed boundary conditions (though
of course it satisfies Dirichlet conditions on boundaries determined by its closed nodal lines,
which however vary from sample to sample). It is easy, though, to create Gaussian random
superpositions that satisfy Dirichlet or Neumann conditions at straight boundaries, and this will
be sufficient to establish the leading-order (in k or n) correction to the bulk statistics generated
by (6). In a sense this is a statistical counterpart of the procedure employed by Balian and
Bloch (1970), who determined the perimeter correction to the Weyl rule (1) by employing
free-space Green functions adapted to satisfy conditions on a straight boundary.

With the boundary defined as the x axis (figure 1), the adapted superposition for Dirichlet
conditions (u = 0 for y = 0) is

uDirichlet(R) = 2√
J

J∑
j=1

sin(Y sin θj ) cos(X cos θj + φj ). (7)

For Neumann conditions (uy = 0 for y = 0), the corresponding superposition is

uNeumann(R) = 2√
J

J∑
j=1

cos(Y sin θj ) cos(X cos θj + φj ). (8)

For complex wavefunctions, the imaginary parts v(R) (equation (2)) are given by the
formulae (7) and (8), with the cosines involving X replaced by sines.
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All required averages of these functions (denoted 〈· · ·〉) can be calculated by integrating
over φj and θj . In particular, we shall need the following averages for products of u at a given
point:

Dirichlet:
〈u2〉 = 1 − J0(2Y ) ≡ BDirichlet

〈u2
X〉 = 1

2 (1 − J0(2Y )− J2(2Y )) ≡ Dx,Dirichlet

〈u2
Y 〉 = 1

2 (1 + J0(2Y )− J2(2Y )) ≡ Dy,Dirichlet

〈uuY 〉 = J1(2Y ) ≡ KDirichlet,

(9)

Neumann:
〈u2〉 = 1 + J0(2Y ) ≡ BNeumann

〈u2
X〉 = 1

2 (1 + J0(2Y ) + J2(2Y )) ≡ Dx,Neumann

〈u2
Y 〉 = 1

2 (1 − J0(2Y ) + J2(2Y )) ≡ Dy,Neumann

〈uuY 〉 = −J1(2Y ) ≡ KNeumann,

(10)

and the following averages for products at two different points RA,RB , using coordinates X
and Y parallel and perpendicular to RA − RB respectively:

Isotropic:

〈u(RA)u(RB)〉 = J0(R) ≡ C

(so〈u2(RA)〉 = 〈u2(RB)〉 = 1)

〈u(RA)uX(RB)〉 = −〈uX(RA)u(RB)〉 = J1(R) ≡ E

〈uX(RA)uX(RB)〉 = 1
2 (J0(R)− J2(R)) ≡ F

(soF0 ≡ 〈u2
X〉 = 1

2 )

〈uY (RA)uY (RB)〉 = J1(R)/R ≡ H.

(11)

All other relevant correlations vanish, including correlations between the real and imaginary
parts u and v; for some quantities, the vanishing follows from averaging over the random
phases φj , while for others it is a consequence of averaging over the angles θj .

These correlations are components of probability distributions, which will always be
denoted by the generic symbol P , whose arguments will unambiguously specify the variables.
Two useful distributions are

P(uX) = exp
(−u2

X/2DX
)

√
2πDX

, P (u = 0, uY ) = exp
(−Bu2

Y /2(BDY −K2)
)

2π
√
BDY −K2

. (12)

These and other distributions can easily be calculated using 〈exp(if )〉 = exp(− 1
2 〈f 2〉) for any

linear functional of Gaussian variables with zero mean.

3. Nodal lines

3.1. Mean nodal line length

The average of (4) can be written in the form

〈L〉 = k

2
√

2

∫ ∫
AB

d2r ρL(Y ) (13)

where the prefactor is the mean density of nodal length, so that the quantity ρL(Y ) → 1 as
Y → ∞. ρL(Y ) is the factor modifying the mean density of nodal length as a function of
distance from the boundary. This function can be determined as follows:
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Figure 2. Mean nodal line density ρL(Y ), for Dirichlet (thick curve) and Neumann (thin curve)
boundary conditions.

ρL(Y ) = 2
√

2〈δ(u)|∇Ru|〉 = 1

π3/2
√
DX(BDY −K2)

×
∫ ∞

−∞
duX

∫ ∞

−∞
duY exp

{
−1

2

(
u2
X

DX
+

Bu2
Y

BDY −K2

)}√
u2
X + u2

Y

= 2
√

2

π
DX(BDY −K2)

∫ π/2

0

dθ

(BDX cos2 θ + (BDY −K2) sin2 θ)3/2
, (14)

where the first equality follows from (4), the second from the probability distributions (12)
and the third from integrating over the |∇u|; the quantities B, etc, are defined in (9) and (10).

It is possible to evaluate the θ integral in (14) in terms of elliptic functions, but I do not
give the expression here. Graphs of ρL(Y ) for Dirichlet and Neumann boundary conditions,
obtained by substituting the correlations (9) or (10), are shown in figure 2. In both cases there
is nodal repulsion from the boundary (i.e. ρL(Y ) < 1), stronger for Dirichlet than Neumann,
reflecting the fact that for both conditions the nodal lines typically intersect the boundary
perpendicularly (non-perpendicular intersections can easily be constructed, but correspond
to higher-order, and hence unstable, zeros). In the Dirichlet case, perpendicularity is a
consequence of the fact that a boundary nodal intersection is a zero-height saddle of u(r),
together with the wave equation, which states that ∇2u = 0 when u = 0. In the Neumann
case, perpendicularity arises because ∇u points along the boundary, so the contours of u,
including u = 0, are perpendicular to ∇u.

Far from the boundary, ρL(Y ) decays to 1 while oscillating. The asymptotics of this decay,
including the leading-order non-oscillatory term, can be obtained from (14) using the Hankel
asymptotics of the Bessel functions in (9) or (10). For Dirichlet conditions, the result is

ρL,Dirichlet(0) =
√

2

π

ρL,Dirichlet(Y ) = 1 +
cos[2Y − 1

4π ]√
πY

− 1

32πY
+ O

(
1

Y

)
as Y → ∞.

(15)

The term −Y−1 implies an infinite deficit in mean line length in an infinite strip perpendicular
to the boundary. The development of this deficit can be quantified by (negative) excess in a
strip of height Y :
∫ Y

0
dU (ρL,Dirichlet(U)− 1) = − logY

32π
− 0.945 +

sin(2Y − 1
4π)

2
√
πY

+ O

(
1√
Y

)
(16)
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Figure 3. Mean excess nodal line length
∫ Y

0 dU (ρL(U) − 1), for (a) Dirichlet, (b) Neumann
boundary conditions. Thick curves, exact; thin curves, nonoscillatory parts of the
approximations (16) and (18) (with the oscillatory contributions, the curves cannot be
distinguished).

where the constant −0.945 has been determined by numerical integration based on (14).
Figure 3(a) shows this excess, together with the nonoscillatory part of the asymptotic
approximation (16).

For Neumann conditions, the expressions corresponding to (15) and (16) are

ρL,Neumann(0) = 2

π

ρL,Neumann(Y ) = 1 − cos[2Y − 1
4π ]√

πY
− 1

32πY
+ O

(
1

Y

)
as Y → ∞

(17)

and∫ Y

0
dU (ρL,Neumann(U)− 1) = − logY

32π
− 0.005 − sin(2Y − 1

4π)

2
√
πY

+ O

(
1√
Y

)
, (18)

and the density and excess are displayed in figures 2 and 3(b).
To obtain the mean total line length, it is necessary to integrate ρL(Y ) over the domain

AB according to (13). To separate the bulk and boundary contributions, we write ρL(Y ) =
1+ (ρL(Y )−1). The term 1 gives the areaAB , and generates the bulk contribution to (13). For
the integration over AB in the boundary term, a natural procedure is to use local coordinates
x (parallel to the boundary) and y (perpendicular to the boundary) (figure 1). The integration
over x simply gives the perimeter LB . In the integration over y, the oscillatory terms in (15)
or (17) disappear by interference, but the terms in Y−1 lead to logarithmic divergences as
in (16) or (18). The correct procedure would seem to be to terminate the integration at a y
value representing the diameter of the billiard, e.g.

√
AB , leading to
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〈L〉 = kAB

2
√

2
− LB

64π
√

2
log(k

√
AB) + O(k0). (19)

It is interesting that the perimeter correction is the same for both Dirichlet or Neumann
conditions, in contrast to the perimeter correction to the Weyl rule (1) for the level counting
function, which is negative for the Dirichlet case and positive in the Neumann case.

A convenient way to represent (19) in dimensionless form is to divide L by
√
AB and

replace k by the level number n according to the Weyl rule (1). This gives

〈L〉√
AB

=
√
πn

2
− LB

128π
√

2AB
log n + O(n0). (20)

At this level of approximation, the constant term in (19) or (20) is undetermined. The
constant depends, for example, on the choice of cutoff for the Y integration, on the choice
of Jacobian for the area integration (strictly this should be not dx dy but dx dy(1 − y/R(x)),
where R(x) is the radius of curvature of the boundary at x) and also, in the case of (20),
whether the Weyl rule relating k to n includes the perimeter correction.

3.2. Nodal line length fluctuations

Because of statistical fluctuations, the nodal line length will vary from state to state. It is
important to estimate the strength of these fluctuations, in case they threaten to mask the
boundary corrections (19) and (20). The fluctuations can be represented by

δL ≡
√

〈(L− 〈L〉)2〉 =
√

〈L2 − 〈L〉2〉. (21)

To calculate δL according to the Gaussian random model, it suffices to use the isotropic
superposition (6). This gives, using (4),

〈L2〉 = k2

8

∫ ∫
AB

drA

∫ ∫
AB

drB gL(|RA − RB |), (22)

where

gL(|RA − RB |) = 8〈δ(u(rA))δ(u(rB))|∇Ru(rA)||∇Ru(rB)|〉. (23)

The factor k2/8 is chosen to ensure that gL(R) → 1 as R → ∞.
The average in (23) is easier to calculate if the factors |∇u| are represented in Gaussian

form, and this can be achieved with the identity

|A| = 1√
2π

∫ ∞

0

dt

t3/2

(
1 − exp

(
−1

2
A · At

))
. (24)

With probability distributions obtained from the correlations (11), the quantity to be averaged
involves only Gaussian integrals, leading to

gL(R) = 2

π2
√
D1D2

∫ ∞

0

dtA

t
3/2
A

∫ ∞

0

dtB

t
3/2
B

×
[

1√
((0, 0)

− 1√
((tA, 0)

− 1√
((0, tB)

− 1√
((tA, tB)

]
, (25)

where
D1 ≡ [E2 − (1 + C)(F0 − F)][E2 − (1 − C)(F0 + F)], D2 ≡ F 2

0 −H 2,

((tA, tB) ≡ [(γ + tA)(γ + tB)− δ2][(α + tA)(α + tB)− β2],

α ≡ 1

D1
[F0(1 − C2)− E2], β ≡ 1

D1
[CE2 − F(1 − C2)],

γ ≡ F0

D2
, δ ≡ − H

D2
.

(26)
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I have not been able to evaluate the integrals over tA and tB analytically, but to estimate the
leading-order fluctuations this is not necessary, since the variable R = kr � 1 for almost the
entire range of the area integrations in (22). Only the large-R asymptotics is required, and this
can be established with the aid of the asymptotics of the Bessel functions (including the first
correction to the leading-order approximations) occurring in the quantities in (26) (cf (11));
the resulting integrals over tA and tB can be evaluated analytically, with the result

gL(R) = 1 +
2 sin(2R)

πR
+

1

64π2R2
+ O

(
sin(2R + µ)

R2

)
. (27)

The fact that the leading nonoscillatory term is of order R−2 rather than R−1, as might have
been expected from the asymptotics of squares of Bessel functions, is surprising; it results
from a cancellation whose meaning is still obscure.

To evaluate the double integral (22), we use (27), with a lower cutoff atR ∼ 1 and an upper
cutoff at R ∼ k

√
AB , and ignore the oscillatory term because it will cancel by interference.

This leads to

(δL)2 ≈ AB

256π
log(k

√
AB) (28)

and its dimensionless counterpart

δL√
AB

≈ 1

16

√
log n

2π
. (29)

The fluctuations thus calculated are smaller—but only just!—than the boundary
contributions (19) and (20). This happy conclusion is the result of the cancellation already
mentioned, leading to the smaller-than-expected nonoscillatory term in (27), and gives rise to
the hope that the nodal length boundary corrections might be detected in numerical experiments
without the need to average over long sequences of states.

3.3. Curvatures of nodal lines

From elementary differential geometry (e.g. Struik 1950), the curvature (rate of turning of the
tangent) of a contour line of u at point r is

κ(r) = u2
xuxx + u2

yuyy − 2uxuyuxy
|∇u|3 . (30)

Therefore the probability distribution of curvature of nodal lines, weighted according to nodal
line length, is

P(κ) = 〈δ(u)|∇u|δ(κ − κ(r))〉
〈δ(u)|∇u|〉 . (31)

To calculate this on the Gaussian random model, it again suffices to use the isotropic
superposition (6). For the gradient, it is convenient to use the polar representation

∇u = |∇u|(cos θ, sin θ). (32)

A considerable simplification results from noticing that on a nodal line the wave equation gives
uyy = −uxx . Then an obvious k scaling gives

P

(
κ

k

)
=

〈
δ(u)|∇Ru|δ

(
κ/k −

(
(uxx cos 2θ − uxy sin 2θ)/|∇Ru|

))〉
〈δ(u)|∇Ru|〉 . (33)

The relevant additional required averages are

〈|∇Ru|2〉 = 1, 〈u2
xx〉 = 3

8 , 〈u2
xy〉 = 1

8 , 〈uuxx〉 = − 1
2 , (34)

leading to the probability distributions
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P(|∇u|) = 2|∇u| exp(−|∇u|2)

P (u = 0, uxx) =
√

2

π
exp(−4u2

xx).
(35)

Evaluation of (33) now requires only elementary integrations, giving the result

P

(
κ

k

)
= 4

π(1 + (κ/k)2)2
. (36)

This gives the not very surprising result that the radii of curvature of the nodal lines are of the
order of the wavelength λ = 2π/k; more precisely,

〈|κ|〉 = k

π
= 2

λ
,

√
〈κ2〉 = k

2
= π

λ
. (37)

However, the long tail of the distribution (36) means that higher moments of κ are infinite,
indicating places where nodal lines can be very strongly curved—for example close to places
where nodal lines cross (these have codimension 1, see Berry 1983). Similar behaviour occurs
in the distribution of curvatures of nodal lines in random complex waves in three dimensions
(Berry and Dennis 2000).

The result (36), for the (naturally length-weighted) curvatures of nodal lines, contrasts
with the distribution of (naturally area-weighted) curvatures of all u-contours, namely
(1 + 4(κ/k)2/3)−3/2.

4. Nodal points

4.1. Mean number of nodal points

From (5), the mean number of nodal points is

〈N〉 = k2

4π

∫ ∫
AB

dr ρP (Y ), (38)

where, in terms of the complex Gaussian superposition defined by (2), (7) and (8),

ρP (Y ) = 4π〈δ(u)δ(v)|∇Ru× ∇Rv|〉. (39)

The prefactor is chosen so that ρP (Y ) → 1 as R → ∞, corresponding to the lowest-order
(bulk) mean number ABk2/4π , previously calculated by Berry and Robnik (1986a) and for a
wider class of situations (e.g. speckle patterns and black-body radiation) by Berry and Dennis
(2000). The averages in (39) are easy to calculate in terms of the quantities defined in (9)
and (10), with the result

ρP (Y ) = 2
√
DX(BDY −K2)

B3/2
. (40)

Figure 4 shows this density for Dirichlet and Neumann boundary conditions. In both
cases, ρP (0) = 0, indicating repulsion of nodal points from the boundary; this is stronger for
Dirichlet than for Neumann, as can be seen from the sample boundary-adapted functions in
figure 6.

Notwithstanding this local depletion near the boundary, the asymptotic density eventually
exceeds that in the bulk: for large Y , ρP (Y ) tends to unity from above. For the Dirichlet case,

ρP,Dirichlet(Y ) = 1 +
2 cos[2Y − 1

4π ]√
πY

+
1

4πY
+ o

(
1

Y

)
as Y → ∞, (41)
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Figure 4. Mean density of nodal points ρP (Y ), for Dirichlet (thick curve) and Neumann (thin
curve) boundary conditions.
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Figure 5. Mean excess of nodal points
∫ Y

0 dU (ρP (U)−1), for (a) Dirichlet, (b) Neumann boundary
conditions. Thick curves, exact; thin curves, nonoscillatory parts of the approximations (42)
and (44) (with the oscillatory contributions, the curves cannot be distinguished).

and the long-range phenomenon just described is indicated by the positivity of the coefficient
of Y−1. Moreover, the excess is nonintegrable, with the number of zeros in a unit strip of
length Y diverging logarithmically (figure 5(a)) as
∫ Y

0
dU(ρP,Dirichlet(U)− 1) = logY

4π
− 1.76 +

sin(2Y − 1
4π)√

πY
+ o

(
1√
Y

)
. (42)

Again, the coefficient is determined numerically. Its relatively large value indicates that only
at the large distance Y ∼ exp(1.76 × 4π) ∼ 4 × 109 from the boundary does this asymptotic
excess compensate the local depletion near Y = 0.
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Figure 6. Nodal points of complex wave ψ(R) (i.e. intersections of nodal lines of Reψ and
Imψ), taken from the Gaussian random ensemble: (a) Dirichlet (equation (7)) and (b) Neumann
(equation (8)), with J = 30. The boundary is Y = 0, and the axes are labelled in wavelength units.

There is a similar asymptotic excess in the Neumann case, with the same positive
coefficient of Y−1:

ρP,Neumann(Y ) = 1 − 2 cos[2Y − 1
4π ]√

πY
+

1

4πY
+ o

(
1

Y

)
as Y → ∞. (43)

However, in the logarithmic divergence, given by∫ Y

0
dU(ρP,Neumann(U)− 1) = logY

4π
− 0.13 − sin(2Y − 1

4π)√
πY

+ o

(
1√
Y

)
(44)

(figure 5(b)), the coefficient is smaller, so the asymptotic excess should dominate at the much
smaller distance Y ∼ exp(0.13 × 4π) ∼ 5.

The logarithmic divergence makes the integral (38) over AB problematic, but the same
truncation as used in section 3.1 for nodal lines leads to the following mean nodal number,
expressed in terms of k and n:

〈N〉 = ABk
2

4π
+
LBk

16π2
log(k

√
AB) + O(k)

= n +
LB

16π3/2
√
AB

√
n log n + O(

√
n). (45)

The positive excess of nodal points resulting from the influence of the boundary, in both the
Dirichlet and Neumann cases, is surprising. It contradicts and supersedes the conjecture in
Berry and Robnik (1986a). This was based on a semiquantitative argument incorporating
only the depletion near the boundary, and neglecting the long-range excess embodied in (42)
and (44).

4.2. Fluctuation in number of nodal points

To estimate these fluctuations, it suffices, as with nodal line lengths, to use the isotropic
Gaussian random function ψ , defined by (2) and (6). The fluctuations can be calculated from

δN ≡
√

〈(N − 〈N〉)2〉 =
√

〈N2〉 − 〈N〉2. (46)

The result is

〈N2〉 =
(
k2

4π

)2 ∫ ∫
AB

drA

∫ ∫
AB

drB gP (|RA − RB |), (47)
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where

gP (|RA − RB |) = 16π2〈δ(u(rA))δ(u(rB))δ(v(rA))δ(v(rB))
× |∇Ru(rA)× ∇Rv(rA)||∇Ru(rB)× ∇Rv(rB)|〉. (48)

gP (R) is the planar correlation function between nodal points. It was calculated in
section 4e of Berry and Dennis (2000), in terms of an integral, whose explicit representation in
terms of elliptic integrals was given by Dennis (2001). As with the corresponding quantity (25)
for nodal line lengths, only the large-R asymptotics is required in order to estimate the
fluctuations, and this can be calculated to be

gP (R) = 1 +
4 sin(2R)

πR
+

11

8π2R2
+ O

(
sin(2R + µ)

R2

)
. (49)

As in the case of nodal line lengths, the nonoscillatory term is of order R−2 rather than
R−1, because of an unanticipated cancellation. In the integral (47), this leads to a divergence,
whose natural truncation gives the estimate

(δN)2 ≈ 11ABk2

64π3
log(k

√
AB), (50)

or, in terms of n rather than k,

δN ≈ 1

4π

√
11

2
n log n. (51)

Again this is smaller than the boundary contribution to the mean nodal number (45).
The theory of this section has been concerned with the number of nodal points regardless

of their associated signs, i.e. topological charges (+1 for a phase change +2π in a positive
circuit of the zeros, −1 for a phase change −2π ). Interesting long-range effects in the charge
correlation function, given by (48) without the modulus signs, and interpretable in terms of
screening, have been described by Freund and Wilkinson (1998), Berry and Dennis (2000) and
Dennis (2001).

5. Concluding remarks

The main theoretical innovation has been the use of a Gaussian random function locally
adapted to satisfy billiard boundary conditions. This enables perimeter corrections to be
determined up to the leading (logarithmic) order, but is insufficient to determine the associated
constants. A possible extension would be to choose random functions adapted not to a straight
boundary but to a circular one. This would enable the development of Gaussian random models
satisfying boundary conditions to higher order in k, and possibly determining these constants.
However, these circular waves are superpositions of Bessel functions rather than plane waves,
and the corresponding analysis would be more complicated. Looking further ahead, it might
be possible to generate superpositions matching the boundary conditions to arbitrarily high
order, and so generate nodal (and other) statistics including more boundary corrections.

A surprising outcome of this work is the long-range behaviour of the nodal line and point
densities as functions of distance y from the boundary. This leads to the predictions of nodal
excesses (negative for lines (equations (16), (18), (19)), positive for points (equations (42), (44),
(45)) growing logarithmically with y. Other unexpected logarithms occur in the fluctuations
of nodal line lengths ((28), (29)) and numbers of nodal points ((50), (51)). Perhaps these are
related to other long-range structures in Gaussian random superpositions, for example the lines
of high intensity (‘scarlets’) observed and described by O’Connor et al (1987).
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The observation, at least in numerical experiments, of the nodal line curvature statistics
of section 3.3 should not be too difficult. It should also be possible to study the depeletion
of nodal lines and points near boundaries, and test the density functions in figures 2 and 4.
However, detecting the logarithmic perimeter and fluctuation effects might present a challenge
to numerical analysis, since these might be easily masked by the local depletion. The most
promising strategy would seem to be to study the Neumann cases, where the constants
(equations (19) and (44)) are smaller, so the logarithms get established closer to the boundary.
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Appendix. Mixed boundary conditions

The most general local Hermitian (Robin) boundary condition is, for a real wavefunction with
boundary y = 0,

cos(α)u(0, x) +
sin(α)

k
uy(0, x) = 0, (A.1)

whereα is a real angle between 0 andπ , withα = 0 corresponding to the Dirichlet condition and
α = π/2 corresponding to the Neumann condition. For complex waves ψ , the same relation
holds. The boundary-adapted Gaussian random function satisfying (A.1) and representing a
superposition of isotropically distributed plane waves is the generalization of (7) and (8), easily
calculated to be

u(R) = 2√
J

J∑
j=0

sin(Y sin θj − tan−1(sin θj tan α)) cos(X cos θj + φj )

= 2√
J

J∑
j=0

cosα sin(Y sin θj )− sin θj sin α cos(Y sin θj )√
cos2 α + sin2 α sin2 θ

cos(X cos θj + φj ).

(A.2)

The correlations involving u and its derivatives, generalizing B, Dx , Dy and K in (9)
and (10), cannot be evaluated in closed form, but they are easy to calculate numerically, and
their large-Y asymptotics can be calculated analytically. These correlations appear in the
density ρL(Y ) (equation (14)) for nodal line length, and its equivalent ρP (Y ) (equation (40))
for nodal points.

For nodal lines, the asymptotic form, generalizing (15) and (17), is

ρL(Y ) = 1 +
cos(2Y − 2α − 1

4π)√
πY

− 1

32πY
+ o

(
1

Y

)
as Y → ∞. (A.3)

The coefficient of the nonoscillatory correction term is independent of α.
For nodal points, the asymptotic form, generalizing (41) and (43), is

ρP (Y ) = 1 +
2 cos(2Y − 2α − 1

4π)√
πY

+
1

4πY
+ o

(
1

Y

)
as Y → ∞. (A.4)

Again, the coefficient of the nonoscillatory correction term is independent of α.
The nodal densities near Y = 0 display interesting structure when α is small and positive;

this will be described elsewhere.
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